In vitro antifungal activity of Candida culture extracts against Trichophyton rubrum and Trichophyton mentagrophytes

Main Article Content

Thiago Henrique Lemes
Guilherme Silva Torrezan
Carlos Roberto Polaquini
Luis Octavio Regasini
Bianca Gottardo de Almeida
Natália Seron Brizzotti-Mazuchi
Mariela Domiciano Ribeiro
Taiza Maschio-Lima
Maicon Henrique Caetano
Veridianna Camilo Pattini
Mario Henrique Paziani
Marcia Regina von Zeska Kress
João Paulo Zen Siqueira
Margarete Teresa Gottardo Almeida

Abstract

Onychomycoses are nail infections caused primarily by dermatophytes fungi, yeasts, and other filamentous fungi, characterized by persistent infections, prolonged therapy, and high recurrence rates. In clinical practice, some of these occurrences present two or more microorganisms, and the interactions among them can change the chemical environment mediated by small diffusible molecules, producing a competitive niche. The aim of this study was to evaluate the antifungal activity of individual extracts of pure cultures of Candida albicans and C. parapsilosis against dermatophytes. To obtain the fungal extracts, cultures were filtered through a 0.2 μm membrane and submitted to liquid-liquid extraction using ethyl acetate. The Minimal Inhibitory Concentration (MIC) of each extract was evaluated by broth microdilution method and checkerboard assay with fluconazole against clinical isolates of Trichophyton rubrum and T. mentagrophytes. The invertebrate model of Galleria mellonella was used to evaluate the toxicity of the extracts. As results, the extracts of C. albicans and C. parapsilosis showed antifungal activity with MICs between 31,2 – 2000 μg/mL. In association with fluconazole, synergistic effect was detected for all combinations. The extracts presented low toxicity in G. mellonella. In the future, isolation and identification of the extract compounds may allow new therapeutic approaches in the control of fungal infections.

Article Details

How to Cite
Lemes, T. H., Torrezan, G. S., Polaquini, C. R., Regasini, L. O., Almeida, B. G. de ., Brizzotti-Mazuchi, N. S., Ribeiro, M. D., Maschio-Lima, T., Caetano, M. H., Pattini, V. C., Paziani, M. H. ., von Zeska Kress, M. R. ., Siqueira, J. P. Z., & Almeida, M. T. G. . (2021). In vitro antifungal activity of Candida culture extracts against Trichophyton rubrum and Trichophyton mentagrophytes. Brazilian Journal of Case Reports, 1(4), 135–152. https://doi.org/10.52600/2763-583X.bjcr.2021.1.4.135-152
Section
Experimental Reports
Author Biographies

Thiago Henrique Lemes, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce)

São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo, SP, Brazil.

Guilherme Silva Torrezan, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce)

São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo, SP, Brazil.

Carlos Roberto Polaquini, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce)

São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo, SP, Brazil.

Luis Octavio Regasini, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce)

São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo, SP, Brazil.

Bianca Gottardo de Almeida, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce)

São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo, SP, Brazil.

Natália Seron Brizzotti-Mazuchi, Department of Infectious, Parasitary and Dermatology Diseases, São José do Rio Preto Medical School (Famerp)

Department of Infectious, Parasitary and Dermatology Diseases, São José do Rio Preto Medical School (Famerp), São Paulo, SP, Brazil.  

Mariela Domiciano Ribeiro, Department of Infectious, Parasitary and Dermatology Diseases, São José do Rio Preto Medical School (Famerp)

Department of Infectious, Parasitary and Dermatology Diseases, São José do Rio Preto Medical School (Famerp), São Paulo, SP, Brazil.  

Taiza Maschio-Lima, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce)

São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo, SP, Brazil.

Maicon Henrique Caetano, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce)

São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo, SP, Brazil.

Veridianna Camilo Pattini, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce)

São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo, SP, Brazil.

Mario Henrique Paziani, Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP)

Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), São Paulo, SP, Brazil.  

Marcia Regina von Zeska Kress, Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP)

Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), São Paulo, SP, Brazil.  

João Paulo Zen Siqueira, Department of Infectious, Parasitary and Dermatology Diseases, São José do Rio Preto Medical School (Famerp)

Department of Infectious, Parasitary and Dermatology Diseases, São José do Rio Preto Medical School (Famerp), São Paulo, SP, Brazil.  

Margarete Teresa Gottardo Almeida, Department of Infectious, Parasitary and Dermatology Diseases, São José do Rio Preto Medical School (Famerp)

Department of Infectious, Parasitary and Dermatology Diseases, São José do Rio Preto Medical School (Famerp), São Paulo, SP, Brazil.  

References

Gupta AK, Versteeg SG, Shear NH. Onychomycosis in the 21st century: an update on diagnosis, epidemiology, and treatment. J Cutan Med Surg. 2017; 21(6): 525-539. doi: 10.1177/1203475417716362.

Vlahovic TC. Onychomycosis: Evaluation, treatment options, managing recurrence, and patient outcomes. Clin Podiatr Med Surg. 2016; 33(3): 305-318. doi: 10.1016/j.cpm.2016.02.001.

Gupta AK, Mays RR. The impact of onychomycosis on quality of life: a systematic review of the available literature. Skin Appendage Disord. 2018; 4: 208–216. doi: 10.1159/000485632.

El-Ganiny AM, Yossef NE, Kamel HA. Prevalence and antifungal drug resistance of nosocomial Candida species isolated from two university hospitals in Egypt, Curr. Med. Mycol. 2021; 7: 31–37. doi: 10.18502/cmm.7.1.6181.

Tosti A, Elewski BE. Onychomycosis: practical approaches to minimize relapse and recurrence. Skin Appendage Disord. 2016; 2(1-2): 83-87. doi: 10.1159/000448056.

Hall GS. Interactions of yeasts, moulds, and antifungal agents: How to detect resistance. 1st ed. Humana Press; 2012.

Rosen T, Friedlander SF, Kircik L, Zirwas MJ, Gold LS, Bhatia N, Gupta AK. Onychomycosis: epidemiology, diagnosis, and treatment in a changing landscape. J Drugs Dermatol. 2015;14: 223–33.

Scorzoni L, de Paula e Silva ACA, Marcos CM, Assato PA, Melo WCMA, Oliveira HC, Costa-Orlandi CB, Mendes-Giannini MJ, Fusco-Almeida AM. Antifungal Therapy: new advances in the understanding and treatment of mycosis. Front Microbiol. 2017; 23(8): 36. doi: 10.3389/fmicb.2017.00036

Ghannoum M, Isham N. Fungal nail infections (onychomycosis): a never-ending story? PLoS Pathog. 2014; 10(6): e1004105. doi: 10.1371/journal.ppat.1004105

Gupta AK, Daigle D, Carviel JL. The role of biofilms in onychomycosis. J Am Acad Dermatol. 2016; 74(6): 1241-1246. doi: 10.1016/j.jaad.2016.01.008

Biasi-Garbin RP, Demitto F de O, do Amaral RCR, Ferreira MRA, Soares LAL, Svidzinski TIE, Baeza LC, Yamada-Ogatta, SF. Antifungal potential of plant species from brazilian caatinga against dermatophytes. Rev Inst Med Trop Sao Paulo. 2016; 58: 18. doi: 10.1590/S1678-9946201658018.

De Toledo LG, Dos Santos Ramos MA, Spósito L, Castilho EM, Pavan FR, Lopes EO, Zocolo GJ, Silva FA, Soares TH, Dos Santos AG, Bauab TM, De Almeida MT. Essential oil of Cymbopogon nardus (L.) Rendle: A strategy to combat fungal infections caused by Candida species. Int J Mol Sci. 2016; 17(8): 1252. doi: 10.3390/ijms17081252.

Gupta AK, Studholme C. Novel investigational therapies for onychomycosis: an update. Expert Opin Investig Drugs. 2016; 25(3): 297-305. doi: 10.1517/13543784.2016.1142529.

Clinical Laboratory and Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. Approved Standard—Second Edition, document M38-A2. Clin Lab Stand Inst. 2008; 28: 29.

Clinical Laboratory and Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Approved standard, 3rd edn, document M27-A3. Wayne, PA: Clin Lab Stand Inst. 2008.

Kumar SN, Siji J V., Nambisan B, Mohandas C. Activity and synergistic interactions of stilbenes and antibiotic combinations against bacteria in vitro. World J Microbiol Biotechnol. 2012; 28(11): 3143-3150. doi: 10.1007/s11274-012-1124-0.

Renwick J, Daly P, Reeves EP, Kavanagh K. Susceptibility of larvae of Galleria mellonella to infection by Aspergillus fumigatus is dependent upon Stage of conidial germination. Mycopathologia. 2006; 161(6): 377-84. doi: 10.1007/s11046-006-0021-1.

Singal A, Khanna D. Onychomycosis: Diagnosis and management. Indian J Dermatology, Venereol Leprol. 2011; 77(6): 659-672. doi: 10.4103/0378-6323.86475.

Ziccardi M, Souza LOP, Gandra RM, Galdino ACM, Baptista ARS, Nunes AP, Ribeiro MA, Branquinha MH, Santos ALS. Candida parapsilosis (sensu lato) isolated from hospitals located in the Southeast of Brazil: Species distribution, antifungal susceptibility and virulence attributes. Int J Med Microbiol. 2015; 305(8): 848-59. doi: 10.1016/j.ijmm.2015.08.003.

Subramanya SH, Hamal D, Nayak N, Gokhale S. Case Report Onychomycosis due to Candida parapsilosis in a child with ventricular Septal Defect: An Unusual Predisposition. Case Rep Pediatr. 2016, 2016: 4. doi: 10.1155/2016/7026068.

Fich F, Abarzúa-Araya A, Pérez M, Nauhm Y, León E. Candida parapsilosis and Candida guillermondii: Emerging pathogens in nail candidiasis. Indian J Dermatol. 2014; 59(1): 24–29. doi: 10.4103/0019-5154.123485.

Moubasher AH, Abdel-Sater MA, Soliman Z. Incidence and biodiversity of yeasts, dermatophytes and non-dermatophytes in superficial skin infections in Assiut, Egypt. J Med Mycol. 2017; 27(2): 166-179. doi: 10.1016/j.mycmed.2017.01.005.

Khosravi AR, Shokri H, Nikaein D, Mansouri P, Erfanmanesh A, Chalangari R, Katalin M. Yeasts as important agents of onychomycosis: In vitro activity of propolis against yeasts isolated from patients with nail infection. J Altern Complement. Med. 2013; 19(1): 57-62. doi: 10.1089/acm.2011.0722

Fatahinia M, Jafarpour S, Rafiei A, Taghipour S, Makimura K, Rezaei-Matehkolaei A. Mycological aspects of onychomycosis in Khuzestan Province, Iran: A shift from dermatophytes towards yeasts. Curr Med Mycol. 2017; 3(4): 26-31. doi: 10.29252/cmm.3.4.26

Suryawanshi RS, Wanjare SW, Koticha AH, Mehta PR. Onychomycosis: dermatophytes to yeasts: an experience in and around Mumbai, Maharashtra, India. Int J Res Med Sci 2017; 5(5): 1959-1963. doi: 10.18203/2320-6012.ijrms20171825.

Abdel-Rhman SH, El-Mahdy AM, El-Mowafy M. Effect of tyrosol and farnesol on virulence and antibiotic resistance of clinical isolates of Pseudomonas aeruginosa. Biomed Res Int. 2015; 2015: 456463. doi: 10.1155/2015/456463.

Jakubczyk D, Dussart F. Selected Fungal Natural Products with Antimicrobial Properties. Molecules. 2020; 25(4): 911. doi: 10.3390/molecules25040911.

Wang X, Wang Y, Zhou Y, Wei X. Farnesol induces apoptosis-like cell death in the pathogenic fungus Aspergillus flavus. Mycologia. 2014; 106(5): 881-888. doi: 10.3852/13-292.

Pakshir K, Mohamadi T, Khodadadi H, Motamedifar M, Zomorodian K, Alipour S, Motamedi M. Proteolytic activity and cooperative hemolytic effect of dermatophytes with different species of bacteria. Curr Med Mycol 2017; 2(4): 9-14. doi: 10.18869/acadpub.cmm.2.4.9.

Raheem AR, Omolade OA, Folorunso JB, Oluwadun A, Onilude AA. Comparative study of keratinolytic activities of dermatophytes in various keratin substrates. Virol Mycol. 2013; 2(3): 1-3. doi: 10.4172/2161-0517.1000117.

Yue X, Li Q, Wang H, Sun Y, Wang A, Zhang Q, Zhang C. An ultrastructural study of Trichophyton rubrum induced onychomycosis. BMC Infect. Dis. 2015; 15, 532. doi: 10.1186/s12879-015-1240-1.

Albuquerque P, Nicola AM, Nieves E, Paes HC, Williamson PR, Silva-Pereira I, Casadevall A. Quorum sensing-mediated, cell density-dependent regulation of growth and virulence in Cryptococcus neoformans. MBio. 2013; 5(1), e00986-13. doi: 10.1128/mBio.00986-13.

Albuquerque P, Casadevall A. Quorum sensing in fungi--a review. Med Mycol. 2012; 50(4): 337-345. doi: 10.3109/13693786.2011.652201.

Leonhardt I, Spielberg S, Weber M, Albrecht-Eckardt D, Bläss M, Claus R, Barz D, Scherlach K, Hertweck C, Löffler J, Hünniger K, Kurzai. The fungal Quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity. MBio. 2015; 17, 6(2): e00143. doi: 10.1128/mBio.00143-15.

Riekhof WR, Nickerson KW. Quorum sensing in Candida albicans: farnesol versus farnesoic acid. FEBS Lett. 2017; 591(12): 1637-1640. doi: 10.1002/1873-3468.12694.

Derengowski LS, De-Souza-Silva C, Braz SV, Mello-De-Sousa TM, Báo SN, Kyaw CM, Silva-Pereira I. Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule, on Paracoccidioides brasiliensis growth and morphogenesis. Annals of Clin. Microb and Antimicrob. 2009; 8(13). doi: 10.1186/1476-0711-8-13

Al-Fakiha AA, Almaqtrib WQA. Overview on antibacterial metabolites from terrestrial Aspergillus spp. Mycology. 2019; 10(4): 191–209. doi:10.1080/21501203.2019.1604576

Roemer T, Krysan DJ. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med. 2014; 1, 4(5): a019703 doi: 10.1101/cshperspect.a019703.

Lima MIO, Medeiros ACA, Silva KVS, Cardoso GN, Lima EO, Pereira FO. Investigation of the antifungal potential of linalool against clinical isolates of fluconazole resistant Trichophyton rubrum. J Mycol Med. 2017; 27(2): 195-202. doi: 10.1016/j.mycmed.2017.01.011.

Lipner SR, Scher RK. Onychomycosis. J Am Acad Dermatol. 2019; 80(4): 853-867. doi: 10.1016/j.jaad.2018.05.1260.

Jiang Y, Luo W, Verweij PE, Song Y, Zhang B, Shang Z, Al-Hatmi AMS, Ahmed SA, Wan Z, Li R, Hoog GS. Regional differences in antifungal susceptibility of the prevalent dermatophyte Trichophyton rubrum. Mycopathologia. 2021; 186: 53–70. doi: 10.1007/s11046-020-00515-z.

Spitzer M, Robbins N, Wright GD. Combinatorial strategies for combating invasive fungal infections. Virulence. 2017; 17, 8(2): 169-185. doi: 10.1080/21505594.2016.1196300.

Flores FC, Beck RCR, Silva CB. Essential oils for treatment for onychomycosis: a mini-review. Mycopathologia. 2016; 181(1-2): 9-15. doi: 10.1007/s11046-015-9957-3.

Ahmad A, Wani MY, Patel M, Sobral AJFN, Duse AG, Aqlan FM, Al-Bogami AS. Synergistic antifungal effect of cyclized chalcone derivatives and fluconazole against Candida albicans. Med Chem Comm. 2017; 8(12): 2195-2207. doi: 10.1039/c7md00440k.

Binder U, Maurer E, Lass-Flörl C. Galleria mellonella: An invertebrate model to study pathogenicity in correctly defined fungal species. Fungal Biol. 2016; 120(2): 288-295. doi: 10.1016/j.funbio.2015.06.002.

Kavanagh K, Sheehan G. The Use of Galleria mellonella Larvae to identify novel antimicrobial agents against fungal species of medical interest. J Fungi. 2018; 4(3): 113. doi: 10.3390/jof403 0113.

Most read articles by the same author(s)