The use of tissue engineering in maxillary sinus augmentation: a review

Authors

  • Marcelo Rodrigues Azenha Oral and maxillofacial surgeon, University of São Paulo (Ribeirão Preto Campus)
  • Rogério Bentes Kato Oral and maxillofacial surgeon, University of São Paulo (Ribeirão Preto Campus)
  • Michel Campos Ribeiro Oral and maxillofacial surgeon, University of São Paulo (Ribeirão Preto Campus)
  • Rubens Caliento Oral and maxillofacial surgeon, University of São Paulo (Ribeirão Preto Campus)
  • Renan de Barros Lima Bueno Oral and maxillofacial surgeon, University of São Paulo (Ribeirão Preto Campus)

DOI:

https://doi.org/10.52600/2763-583X.bjcr.2022.2.3.11-22

Keywords:

Maxillary sinus, Tissue engineering, Maxilla

Abstract

Tissue engineering is an interdisciplinary field that applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function. The most studies are focused on the preparation of scaffolds, selection of the different cell sources and construction of engineered bone. The decrease in bone height in the sinus area after tooth loss is a major challenge in implantology, making the search for new materials a constant challenge. Faced with this, the aim of this review article is to discuss the tissue engineering techniques for maxillary sinus lifting in atrophic jaws.

Author Biographies

Marcelo Rodrigues Azenha, Oral and maxillofacial surgeon, University of São Paulo (Ribeirão Preto Campus)

Oral and maxillofacial surgeon, University of São Paulo (Ribeirão Preto Campus), Ribeirão Preto, SP, Brazil.

Rogério Bentes Kato, Oral and maxillofacial surgeon, University of São Paulo (Ribeirão Preto Campus)

Oral and maxillofacial surgeon, University of São Paulo (Ribeirão Preto Campus), Ribeirão Preto, SP, Brazil.

Michel Campos Ribeiro, Oral and maxillofacial surgeon, University of São Paulo (Ribeirão Preto Campus)

Oral and maxillofacial surgeon, University of São Paulo (Ribeirão Preto Campus), Ribeirão Preto, SP, Brazil.

Rubens Caliento, Oral and maxillofacial surgeon, University of São Paulo (Ribeirão Preto Campus)

Oral and maxillofacial surgeon, University of São Paulo (Ribeirão Preto Campus), Ribeirão Preto, SP, Brazil.

Renan de Barros Lima Bueno, Oral and maxillofacial surgeon, University of São Paulo (Ribeirão Preto Campus)

Oral and maxillofacial surgeon, University of São Paulo (Ribeirão Preto Campus), Ribeirão Preto, SP, Brazil.

References

Hallman M, Zetterqvist L. A 5-year prospective follow-up study of implant-supported fixed prostheses in patients subjected to maxillary sinus floor augmentation with an 80:20 mixture of bovine hydroxyapatite and autogenous bone. Clin Implant Dent Relat Res. 2004;2:82-89.

Boyne PJ, James RA. Grafting of a maxillary sinus floor with autogenous marrow and bone. Journal of Oral Surgery. 1980;38:613-616.

Tatum H. Maxillary and sinus implant reconstruction. Dental Clinics of North America. 1986;30:207-215.

Fuerst G, Strbac GD, Vasak C, Tangl S, Leber J, Gahleitner A, Gruber R, Watzek G. Are culture-expanded autogenous bone cells a clinically reliable option for sinus grafting? Clin Oral Implants Res. 2009;20:135-139.

Zizelmann C, Schoen R, Metzger MC, Schmelzeisen R, Schramm A, Dott B, Bormann KH, Gellrich NC. Bone formation after sinus augmentation with engineered bone. Clinical Oral Implants Research. 2007;18:69-73.

Langer R, Vacanti JP. Tissue engineering. Science. 1993;14:920-926.

Rosa AL, de Oliveira PT, Beloti MM. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering. Expert Rev Med Devices. 2008;5:719-728.

Gutwald R, Haberstroh J, Kuschnierz J. Mesenchymal stem cells and inorganic bovine bone mineral in sinus augmentation: Comparison with augmentation by autologous bone in adult sheep. Br J Oral Maxillofac Surg. 2009;48:285-290.

Sun XJ, Xia LG, Chou LL, et al: Maxillary sinus floor elevation using a tissue engineered bone complex with BMP-2 gene modified bMSCs and a novel porous ceramic scaffold in rabbits. Arch Biol. 2010;55:195-202.

Dupont KM, Sharma K, Stevens HY. Human stem cell delivery for treatment of large segmental bone defects. Proc Natl Acad Sci. 2010;107:1-6.

Park JB. Use of cell-based approaches in maxillary sinus augmentation procedures. J Craniofac Surg. 2010;21:557-560.

Tae SK, Lee SH, Park JS, Im GI. Mesenchymal stem cells for tissue engineering and regenerative medicine. Biomed Mater. 2006 Jun;1(2):63-71. doi: 10.1088/1748-6041/1/2/003.

Cancedda R, Giannoni P, Mastrogiacomo M. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials. 2007;28:4240-4250.

Usas A, Ho AM, Cooper GM. Bone regeneration mediated by BMP4-expressing muscle derived stem cells is affected by delivery system. Tissue Eng Part A. 2009;15:285-290.

Ma D, Ren L, Liu Y, Chen F, Zhang J, Xue Z, Mao T. Engineering scaffold-free bone tissue using bone marrow stromal cell sheets. J Orthop Res. 2010;28:697-702.

Rickert D, Sauerbier S, Nagursky H, Menne D, Vissink A, Raghoebar GM. Maxillary sinus floor elevation with bovine bone mineral combined with either autogenous bone or autogenous stem cells: a prospective randomized clinical trial. Clin Oral Implants Res. 2011;22:251-258.

Sauerbier S, Rickert D, Gutwald R, Nagursky H, Oshima T, Xavier SP, Christmann J, Kurz P, Menne D, Vissink A, Raghoebar G, Schmelzeisen R, Wagner W, Koch FP. Bone marrow concentrate and bovine bone mineral for sinus floor augmentation: a controlled, randomized, single-blinded clinical and histological trial per protocol analysis. Tissue Eng Part A. 2011;17:2187-2197.

Wang S, Zhang Z, Xia L, Zhao J, Sun X, Zhang X, Ye D, Uludağ H, Jiang X. Systematic evaluation of a tissue-engineered bone for maxillary sinus augmentation in large animal canine model. Bone. 2010;46:91-100.

Polak JM, Bishop AE. Stem cells and tissue engineering: past, present, and future. Ann N Y Acad Sci. 2006;1068:352-66.

Shayesteh YS, Khojasteh A, Soleimani M, Alikhasi M, Khoshzaban A, Ahmadbeigi N. Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:203-209.

Trautvetter W, Kaps C, Schmelzeisen R, Sauerbier S, Sittinger M.Tissue-engineered polymer-based periosteal bone grafts for maxillary sinus augmentation: five-year clinical results. J Oral Maxillofac Surg. 2011;69:2753-2762.

Ringe J, Leinhase I, Stich S. Human mastoid periosteum- derived stem cells: Promising candidates for skeletal tissue engineering. J Tissue Eng Regen Med. 2008;2:136-146.

Zhu SJ, Choi BH, Huh JY. A comparative qualitative histological analysis of tissue-engineered bone using bone marrow mesenchymal stem cells, alveolar bone cells, and periosteal cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:164-169.

Redlich A, Perka C, Schultz O. Bone engineering on the basis of periosteal cells cultured in polymer fleeces. J Mater Sci Mater Med. 1999;10:767-772.

Groger A, Klaring S, Merten HA. Tissue engineering of bone for mandibular augmentation in immunocompetent minipigs: Preliminary study. Scand J Plast Reconstr Surg Hand Surg. 2003;37:129-33.

Perka C, Schultz O, Spitzer RS. Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials. 2000;21:1145-1153.

van Gaalen SM, de Bruijn JD, Wilson CE, van Blitterswijk CA, Verbout AJ, Alblas J, Dhert WJ. Relating cell proliferation to in vivo bone formation in porous Ca/P scaffolds. J Biomed Mater Res A. 2010;92:303-310.

Lickorish D, Guan L, Davies JE. A three-phase, fully resorbable, polyester/calcium phosphate scaffold for bone tissue engineering: Evolution of scaffold design. Biomaterials. 2007;28:1495-14502.

Yamada Y, Nakamura S, Ito K, Kohgo T, Hibi H, Nagasaka T, Ueda M. Injectable tissue-engineered bone using autogenous bone marrow-derived stromal cells for maxillary sinus augmentation: clinical application report from a 2-6-year follow-up. Tissue Eng Part A. 2008;14:1699-1707.

Ueda M, Yamada Y, Kagami H, Hibi H. Injectable bone applied for ridge augmentation and dental implant placement: human progress study. Implant Dent. 2008;17:82-90.

Hanisch O, Tatakis DN, Rohrer MD, Wöhrle PS, Wozney JM, Wikesjö UM. Bone formation and osseointegration stimulated by rhBMP-2 following subantral augmentation procedures in nonhuman primates. Int J Oral Maxillofac Implants. 1997 Nov-Dec;12(6):785-92.

Boyne PJ, Lilly LC, Marx RE, Moy PK, Nevins M, Spagnoli DB, Triplett RG. De novo bone induction by recombinant human bone morphogenetic protein-2 (rhBMP-2) in maxillary sinus floor augmentation. J Oral Maxillofac Surg. 2005 Dec;63(12):1693-707. doi: 10.1016/j.joms.2005.08.018.

Zou D, Guo L, Lu J, Zhang X, Wei J, Liu C, Zhang Z, Jiang X. Engineering of bone using porous calcium phosphate cement and bone marrow stromal cells for maxillary sinus augmentation with simultaneous implant placement in goats. Tissue Eng Part A. 2012;18:1464-1478.

Jiang XQ, Wang SY, Zhao J, Zhang XL, Zhang ZY. Sequential fluorescent labeling observation of maxillary sinus augmentation by a tissue-engineered bone complex in canine model. Int J Oral Sci. 2009;1:39-46.

Riecke B, Heiland M, Hothan A, Morlock M, Amling M, Blake FA. Primary implant stability after maxillary sinus augmentation with autogenous mesenchymal stem cells: a biomechanical evaluation in rabbits. Clin Oral Implants Res. 2011;22:1242-1246.

Zizelmann C, Schoen R, Metzger MC, Schmelzeisen R, Schramm A, Dott B, Bormann KH, Gellrich NC. Bone formation after sinus augmentation with engineered bone. Clin Oral Implants Res. 2007;18:69-73.

Nagata M, Hoshina H, Li M, Arasawa M, Uematsu K, Ogawa S, Yamada K, Kawase T, Suzuki K, Ogose A, Fuse I, Okuda K, Uoshima K, Nakata K, Yoshie H, Takagi R. A clinical study of alveolar bone tissue engineering with cultured autogenous periosteal cells: coordinated activation of bone formation and resorption. Bone. 2012;50:1123-1129.

Voss P, Sauerbier S, Wiedmann-Al-Ahmad M, Zizelmann C, Stricker A, Schmelzeisen R, Gutwald R. Bone regeneration in sinus lifts: comparing tissue-engineered bone and iliac bone. Br J Oral Maxillofac Surg. 2010;48:121-126.

Mangano C, Piattelli A, Mangano A, Mangano F, Mangano A, Iezzi G, Borges FL, d’Avila S, Shibli JA. Combining Scaffolds and Osteogenic Cells in Regenerative Bone Surgery: A Preliminary Histological Report in Human Maxillary Sinus Augmentation. Clin Implant Dent Relat Res. 2009;11:92-102.

Downloads

Published

2022-06-02

Issue

Section

Health Review

Categories

Most read articles by the same author(s)