New insights into candidate genes for autism spectrum disorder in 8p23.1 duplication syndrome
Main Article Content
Abstract
The 8p23.1 duplication syndrome is a rare condition, characterized by dysmorphisms, intellectual disability, congenital cardiac anomalies, and autism spectrum disorder (ASD). The current model for explaining the pathogenesis of this condition postulates that few dosage-sensitive genes within the duplication are sufficient for the core clinical features, although the molecular mechanisms leading to the ASD presentation remain to be solved. Herein, we described clinical and cytomolecular findings of an 8p23.1 duplication in a boy with mild facial dysmorphisms, cardiac anomalies and ASD. Therefore, we investigated the influence of duplicated genes on the pathophysiology of ASD in our patient. We identified four duplicated genes (BLK, GATA4, PINX1, TNKS) connected with proteins previously associated with ASD and involved in significant enriched pathways associated with human neurological conditions. Moreover, the candidate genes are highly expressed in brain regions associated to ASD, such as the hippocampus. Taken together, these results point out crucial interactions among BLK, GATA4, PINX1, and TNKS and genes associated with ASD. We indicate cellular networks perturbations encompassing neuronal development pathways related to our patient's condition. Thus, these findings bring new insights into the genetic basis of ASD in patients with 8p23.1 duplication syndrome.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abrahams, B.S., Arking, D.E., Campbell, D.B., Mefford, H.C., Morrow, E.M., Weiss, L.A., Menashe, I., Wadkins, T., Banerjee-Basu, S., Packer, A., 2013. SFARI Gene 2.0: A community-driven knowledgebase for the autism spectrum disorders [ASDs). Mol. Autism 4, 1. https://doi.org/10.1186/2040-2392-4-36
Alanis-Lobato, G., Andrade-Navarro, M.A., Schaefer, M.H., 2017. HIPPIE v2.0: Enhancing meaningfulness and reliability of protein-protein interaction networks. Nucleic Acids Res. 45, D408–D414. https://doi.org/10.1093/nar/gkw985
Amaral, D.G., Schumann, C.M., Nordahl, C.W., 2008. Neuroanatomy of autism. Trends Neurosci. 31, 137–145. https://doi.org/10.1016/j.tins.2007.12.005
Amir, O., Sagiv, M., Eynon, N., Yamin, C., Rogowski, O., Gerzy, Y., Amir, R.E., 2010. The response of circulating brain na-triuretic peptide to academic stress in college students. Stress 13, 83–90. https://doi.org/10.3109/10253890902818357
Bakos, J., Bacova, Z., Grant, S.G., Castejon, A.M., Ostatnikova, D., 2015. Are Molecules Involved in Neuritogenesis and Axon Guidance Related to Autism Pathogenesis? NeuroMolecular Med. 17, 297–304. https://doi.org/10.1007/s12017-015-8357-7
Barber, J.C., Bunyan, D., Curtis, M., Robinson, D., Morlot, S., Dermitzel, A., Liehr, T., Alves, C., Trindade, J., Paramos, A.I., Cooper, C., Ocraft, K., Taylor, E.J., Maloney, V.K., 2010. 8P23.1 Duplication Syndrome Differentiated From Copy Number Variation of the Defensin Cluster At Prenatal Diagnosis in Four New Families. Mol. Cytogenet. 3, 1–10. https://doi.org/10.1186/1755-8166-3-3
Barber, J.C.K., Rosenfeld, J.A., Foulds, N., Laird, S., Bateman, M.S., Thomas, N.S., Baker, S., Maloney, V.K., Anilkumar, A., Smith, W.E., Banks, V., Ellingwood, S., Kharbutli, Y., Mehta, L., Eddleman, K.A., Marble, M., Zambrano, R., Crolla, J.A., Lamb, A.N., 2013. 8P23.1 Duplication Syndrome; Common, Confirmed, and Novel Features in Six Further Patients. Am. J. Med. Genet. Part A 161, 487–500. https://doi.org/10.1002/ajmg.a.35767
Chédotal, A., 2019. Roles of axon guidance molecules in neuronal wiring in the developing spinal cord. Nat. Rev. Neurosci. 20, 380–396. https://doi.org/10.1038/s41583-019-0168-7
Chi, N.W., Lodish, H.F., 2000. Tankyrase is a Golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. J. Biol. Chem. 275, 38437–38444. https://doi.org/10.1074/jbc.M007635200
Cho-Park, P.F., Steller, H., 2013. Proteasome regulation by ADP-ribosylation. Cell 153, 614–627. https://doi.org/10.1016/j.cell.2013.03.040
Crepel, A., Breckpot, J., Fryns, J.P., De la Marche, W., Steyaert, J., Devriendt, K., Peeters, H., 2010. DISC1 duplication in two brothers with autism and mild mental retardation. Clin. Genet. 77, 389–394. https://doi.org/10.1111/j.1399-0004.2009.01318.x
Fan, Q., Wang, W., Hao, J., He, A., Wen, Y., Guo, X., Wu, C., Ning, Y., Wang, X., Wang, S., Zhang, F., 2017. Integrating ge-nome-wide association study and expression quantitative trait loci data identifies multiple genes and gene set associated with neuroticism. Prog. Neuro-Psychopharmacology Biol. Psychiatry 78, 149–152. https://doi.org/10.1016/j.pnpbp.2017.05.017
Firth, H. V., Richards, S.M., Bevan, A.P., Clayton, S., Corpas, M., Rajan, D., Vooren, S. Van, Moreau, Y., Pettett, R.M., Carter, N.P., 2009. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 84, 524–533. https://doi.org/10.1016/j.ajhg.2009.03.010
Greene, C.S., Krishnan, A., Wong, A.K., Ricciotti, E., Zelaya, R.A., Himmelstein, D.S., Zhang, R., Hartmann, B.M., Zaslavsky, E., Sealfon, S.C., Chasman, D.I., Fitzgerald, G.A., Dolinski, K., Grosser, T., Troyanskaya, O.G., 2015. Understanding multicellular function and disease with human tissue-specific networks. Nat. Genet. 47, 569–576. https://doi.org/10.1038/ng.3259
Guang, S., Pang, N., Deng, X., Yang, L., He, F., Wu, L., Chen, C., Yin, F., Peng, J., 2018. Synaptopathology involved in autism spectrum disorder. Front. Cell. Neurosci. 12, 1–16. https://doi.org/10.3389/fncel.2018.00470
Hodgkinson, C.A., Goldman, D., Jaeger, J., Persaud, S., Kane, J.M., Lipsky, R.H., Malhotra, A.K., 2004. Disrupted in Schizo-phrenia 1 [DISC1): Association with Schizophrenia, schizoaffective disorder, and bipolar disorder. Am. J. Hum. Genet. 75, 862–872. https://doi.org/10.1086/425586
Horder, J., Petrinovic, M.M., Mendez, M.A., Bruns, A., Takumi, T., Spooren, W., Barker, G.J., Künnecke, B., Murphy, D.G., 2018. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models. Transl. Psychiatry 8, 1–11. https://doi.org/10.1038/s41398-018-0155-1
Huang, S.M.A., Mishina, Y.M., Liu, S., Cheung, A., Stegmeier, F., Michaud, G.A., Charlat, O., Wiellette, E., Zhang, Y., Wiessner, S., Hild, M., Shi, X., Wilson, C.J., Mickanin, C., Myer, V., Fazal, A., Tomlinson, R., Serluca, F., Shao, W., Cheng, H., Shultz, M., Rau, C., Schirle, M., Schlegl, J., Ghidelli, S., Fawell, S., Lu, C., Curtis, D., Kirschner, M.W., Lengauer, C., Finan, P.M., Tallarico, J.A., Bouwmeester, T., Porter, J.A., Bauer, A., Cong, F., 2009. Tankyrase inhibition stabilizes axin and antagonizes Wnt sig-nalling. Nature 461, 614–620. https://doi.org/10.1038/nature08356
Ju, W., Greene, C.S., Eichinger, F., Nair, V., Hodgin, J.B., Bitzer, M., Lee, Y.S., Zhu, Q., Kehata, M., Li, M., Jiang, S., Pia Rastaldi, M., Cohen, C.D., Troyanskaya, O.G., Kretzler, M., 2013. Defining cell-type specificity at the transcriptional level in human disease. Genome Res. 23, 1862–1873. https://doi.org/10.1101/gr.155697.113
Kiefer, F., Andersohn, F., Jahn, H., Wolf, K., Raedler, T.J., Wiedemann, K., 2002. Involvement of plasma atrial natriuretic peptide in protracted alcohol withdrawal. Acta Psychiatr. Scand. 105, 65–70. https://doi.org/10.1034/j.1600-0447.2002.0_011.x
Kilpinen, H., Ylisaukko-Oja, T., Hennah, W., Palo, O.M., Varilo, T., Vanhala, R., Nieminen-Von Wendt, T., Von Wendt, L., Paunio, T., Peltonen, L., 2008. Association of DISC1 with autism and Asperger syndrome. Mol. Psychiatry 13, 187–196. https://doi.org/10.1038/sj.mp.4002031
Kim, S.W., Kim, K.T., 2020. Expression of genes involved in axon guidance: how much have we learned? Int. J. Mol. Sci. 21. https://doi.org/10.3390/ijms21103566
Kuleshov, M. V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S.L., Jagodnik, K.M., Lachmann, A., McDermott, M.G., Monteiro, C.D., Gundersen, G.W., Ma’ayan, A., 2016. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97. https://doi.org/10.1093/nar/gkw377
Longoni, M., Lage, K., Russell, M.K., Loscertales, M., Abdul-Rahman, O.A., Baynam, G., Bleyl, S.B., Brady, P.D., Breckpot, J., Chen, C.P., Devriendt, K., Gillessen-Kaesbach, G., Grix, A.W., Rope, A.F., Shimokawa, O., Strauss, B., Wieczorek, D., Zackai, E.H., Coletti, C.M., Maalouf, F.I., Noonan, K.M., Park, J.H., Tracy, A.A., Lee, C., Donahoe, P.K., Pober, B.R., 2012. Congenital diaphragmatic hernia interval on chromosome 8p23.1 characterized by genetics and protein interaction networks. Am. J. Med. Genet. Part A 158 A, 3148–3158. https://doi.org/10.1002/ajmg.a.35665
Mao, Y., Ge, X., Frank, C.L., Madison, J.M., Koehler, A.N., Doud, M.K., Tassa, C., Berry, E.M., Soda, T., Singh, K.K., Biechele, T., Petryshen, T.L., Moon, R.T., Haggarty, S.J., Tsai, L.H., 2009. Disrupted in Schizophrenia 1 Regulates Neuronal Progenitor Proliferation via Modulation of GSK3β/β-Catenin Signaling. Cell 136, 1017–1031. https://doi.org/10.1016/j.cell.2008.12.044
Martin-Ruiz, C.M., Lee, M., Perry, R.H., Baumann, M., Court, J.A., Perry, E.K., 2004. Molecular analysis of nicotinic receptor expression in autism. Mol. Brain Res. 123, 81–90. https://doi.org/10.1016/j.molbrainres.2004.01.003
Piñero, J., Bravo, Á., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons, J., Centeno, E., García-García, J., Sanz, F., Furlong, L.I., 2017. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839. https://doi.org/10.1093/nar/gkw943
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., 2003. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 13, 2498–2504. https://doi.org//10.1101/ gr.1239303
Sinha, M., Mukhopadhyay, S., Bhattacharyya, N.P., 2012. Mechanism[s) of alteration of micro rna expressions in huntington’s disease and their possible contributions to the observed cellular and molecular dysfunctions in the disease. NeuroMolecular Med. 14, 221–243. https://doi.org/10.1007/s12017-012-8183-0
Suter, T.A.C.S., Jaworski, A., 2019. Cell migration and axon guidance at the border between central and peripheral nervous system. Science [80-. ). 365. https://doi.org/10.1126/science.aaw8231
Tosto, G., Vardarajan, B., Sariya, S., Brickman, A.M., Andrews, H., Manly, J.J., Schupf, N., Reyes-Dumeyer, D., Lantigua, R., Bennett, D.A., De Jager, P.L., Mayeux, R., 2019. Association of Variants in PINX1 and TREM2 with Late-Onset Alzheimer Disease. JAMA Neurol. 76, 942–948. https://doi.org/10.1001/jamaneurol.2019.1066
Weber, A., Köhler, A., Hahn, A., Müller, U., 2014. 8p23.1 duplication syndrome: Narrowing of critical interval to 1.80 Mbp. Mol. Cytogenet. 7, 1–4. https://doi.org/10.1186/s13039-014-0094-3
Yang, C.J., Tan, H.P., Du, Y.J., 2014. The developmental disruptions of serotonin signaling may involved in autism during early brain development. Neuroscience 267, 1–10. https://doi.org/10.1016/j.neuroscience.2014.02.021.